API Reference¶
Auto-generated code documentation.
analytics_project ¶
demo_module_basics ¶
Demonstrate Python basics for professional analytics.
This module demonstrates fundamental Python concepts essential for data analysts, including imports, variables, functions, and function calls.
Module Information
- Filename: demo_module_basics.py
- Module: demo_module_basics
- Location: src/analytics_project/
Key Concepts
- Module imports and code organization
- Variable declaration and scope
- Function definition (reusable logic)
- Function invocation and returns
Professional Applications
- Building maintainable analytics pipelines
- Creating reusable analysis functions
- Organizing code for team collaboration
- Setting up logging for production debugging
demo_basics ¶
demo_basics() -> None
Demonstrate Python basics.
Source code in src/analytics_project/demo_module_basics.py
88 89 90 91 92 93 94 95 96 97 | |
main ¶
main() -> None
Test demo locally.
Source code in src/analytics_project/demo_module_basics.py
105 106 107 108 109 110 111 | |
demo_module_languages ¶
Demonstrate international features.
This module showcases Python's strengths for global analytics projects, including advanced language features and character encoding.
Module Information
- Filename: demo_module_languages.py
- Module: demo_module_languages
- Location: src/analytics_project/
Professional Applications
- Multi-language data processing
- Accessible analytics dashboards
- International team collaboration
- Voice-enabled reporting systems
demo_greetings ¶
demo_greetings() -> None
Greet the user in multiple languages.
Source code in src/analytics_project/demo_module_languages.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | |
main ¶
main() -> None
Run the languages demo.
Source code in src/analytics_project/demo_module_languages.py
53 54 55 56 57 58 59 | |
demo_module_stats ¶
Demonstrate statistical calculations for professional analytics.
This module showcases Python's statistical capabilities using both built-in functions and the statistics library for common data analysis tasks.
Module Information
- Filename: demo_module_stats.py
- Module: demo_module_stats
- Location: src/analytics_project/
Key Concepts
- Type hints for function parameters and returns
- Statistical functions (min, max, mean, stdev)
- Formatted output for professional reporting
- Logging statistical summaries
Professional Applications
- Data quality assessment
- Performance metrics analysis
- Risk calculations
- A/B testing results
calculate_max ¶
calculate_max(scores: Sequence[float]) -> float
Return the maximum value in the list.
Source code in src/analytics_project/demo_module_stats.py
44 45 46 | |
calculate_mean ¶
calculate_mean(scores: Sequence[float]) -> float
Return the mean (average) of the list.
Source code in src/analytics_project/demo_module_stats.py
49 50 51 | |
calculate_min ¶
calculate_min(scores: Sequence[float]) -> float
Return the minimum value in the list.
Source code in src/analytics_project/demo_module_stats.py
39 40 41 | |
calculate_standard_deviation ¶
calculate_standard_deviation(
scores: Sequence[float],
) -> float
Return the standard deviation of the list.
Source code in src/analytics_project/demo_module_stats.py
54 55 56 | |
demo_stats ¶
demo_stats(scores: Sequence[float] | None = None) -> None
Demonstrate how to calculate and log statistics for a list of numbers.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
scores
|
Sequence[float] | None
|
Optional list or tuple of numeric values. If not provided, uses a default list. |
None
|
Source code in src/analytics_project/demo_module_stats.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | |
main ¶
main() -> None
Run demo_stats() locally for testing.
Source code in src/analytics_project/demo_module_stats.py
106 107 108 109 110 111 112 113 | |
demo_module_viz ¶
Demonstrate data visualization for professional analytics.
This module demonstrates Python's data visualization capabilities using Seaborn and Matplotlib to create publication-quality charts for communicating analytical insights.
Module Information
- Filename: demo_module_viz.py
- Module: demo_module_viz
- Location: src/analytics_project/
Key Concepts
- Statistical data visualization with Seaborn
- Working with built-in datasets
- Creating publication-quality figures
- Customizing plots for clarity and impact
Professional Applications
- Executive dashboards
- Research publications
- Client presentations
- Exploratory data analysis
demo_viz ¶
demo_viz() -> None
Create and display a scatter plot of penguin data.
Source code in src/analytics_project/demo_module_viz.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | |
main ¶
main() -> None
Run chart demo locally with its own logger if needed.
Source code in src/analytics_project/demo_module_viz.py
65 66 67 68 69 70 71 72 | |
main ¶
Entry point for professional analytics project execution.
This module serves as the orchestrator, demonstrating how professional Python projects integrate multiple modules into a cohesive application.
Module Information
- Filename: main.py
- Module: main
- Location: src/analytics_project/
Key Concepts
- Module orchestration and integration
- Sequential workflow execution
- Error handling at the application level
- Project structure best practices
Professional Applications
- ETL pipeline coordination
- Automated reporting workflows
- Batch processing systems
- Scheduled analytics jobs
main ¶
main() -> int
Demonstrate a complete Python project structure.
This function coordinates multiple demo modules to illustrate how professional Python projects integrate and run as a pipeline.
Returns:
| Name | Type | Description |
|---|---|---|
int |
int
|
Exit status code (0 for success, 1 for failure) — standard practice in professional Python projects. |
Source code in src/analytics_project/main.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | |
utils_logger ¶
Provide centralized logging for professional analytics projects.
This module configures project-wide logging to track events, debug issues, and maintain audit trails during data analysis workflows.
Module Information
- Filename: utils_logger.py
- Module: utils_logger
- Location: src/analytics_project/
Key Concepts
- Centralized logging configuration
- Log levels (DEBUG, INFO, WARNING, ERROR)
- File-based log persistence
- Colorized console output with Loguru
Professional Applications
- Production debugging and troubleshooting
- Audit trails for regulatory compliance
- Performance monitoring and optimization
- Error tracking in data pipelines
get_log_file_path ¶
get_log_file_path() -> pathlib.Path
Return the path to the active log file, or default path if not initialized.
Source code in src/analytics_project/utils_logger.py
48 49 50 51 52 53 | |
init_logger ¶
init_logger(
level: str = 'INFO',
*,
log_dir: str | Path = project_root,
log_file_name: str = 'project.log',
) -> pathlib.Path
Initialize the logger and return the log file path.
Ensures the log folder exists and configures logging to write to a file.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
level
|
str
|
Logging level (e.g., "INFO", "DEBUG"). |
'INFO'
|
log_dir
|
str | Path
|
Directory where the log file will be written. |
project_root
|
log_file_name
|
str
|
File name for the log file. |
'project.log'
|
Returns:
| Type | Description |
|---|---|
Path
|
pathlib.Path: The resolved path to the log file. |
Source code in src/analytics_project/utils_logger.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | |
log_example ¶
log_example() -> None
Demonstrate logging behavior with example messages.
Source code in src/analytics_project/utils_logger.py
114 115 116 117 118 | |
main ¶
main() -> None
Execute logger setup and demonstrate its usage.
Source code in src/analytics_project/utils_logger.py
121 122 123 124 125 | |